
Concepts

callas pdfChip – the Foundation

For various reasons development at callas software were
looking for technology that could create PDF files on the fly
but did not require programming to express exactly what
type of PDF was to be created (there are a number of mature,
high quality libraries in the market that can already do that).
An obvious approach was to use a language that is good at
expressing two-dimensional static visual content. Inventing
our own language was not an option (there are too many al-
ready), and some of the existing languages were not to our
liking. Ultimately we found ourselves thinking about HTML 5,
including CSS 3, MathML, and SVG (and possibly also
JavaScript, and be it just to remain flexible in situations
where something was needed that wasn’t covered by HTML 5
as such). While there do exist some technologies in the mar-
ket to convert HTML to PDF, each of them had some limita-
tions we could not accept.

Because of this, development decided to create their own
HTML to PDF technology - a major, non-trivial challenge!
Some design decision helped us to not get lost in a sea of re-
quirements and usage scenarios:

• callas pdfChip only creates static two-dimensional PDF
content; while a future version of callas pdfChip might
support video or audio streams by embedding them as
video or audio annotations in PDF, callas pdfChip will
never aim to replicate interactive aspects, whether en-
countered in the form of HTML 5 features like JavaScript,
or through technologies like Flash, Silverlight on so on.

• callas pdfChip is not positioned as a technology, that out
of the box converts web pages or web sites to decent PDF
(though it might work well in numerous cases).

• for optimal use of callas pdfChip certain rules have to be
followed (which are explained in the various chapters of
this documentation).

 Concepts 1

So if it’s not for converting web sites to PDF – what is it
for?

callas pdfChip makes it possible to use HTML – and all the
powerful features that come with it – to describe a high quali-
ty PDF file. Obviously there are a couple of aspects that can’t
be done well, or not at all, in HTML when it comes to defining
what a PDF shall look like. We decided to work on these as-
pects in the following ways:

• colour: add colour related features like spot colours, and
support flexible handling of colour resources, most no-
tably ICC profiles

• advanced graphics PDF features: fully support trans-
parency, overprint, smooth shades and so forth

• support for XMP metadata
• support for ISO standards, most notably PDF/A-1, PDF/A-2

and PDF/A-3, as well as PDF/X-1a and PDF/X-4
• pagination: as CSS 3 for Paged Media never worked out, a

dual pass mode is supported allowing for limitless flexi-
bility to include content that can only be fully known
once all the page breaks have been determined

• aggregation:
• overlay PDF pages onto pages use PDF pages as back-

ground for any object
• overlay PDF pages onto pages
• import PDF pages (like images), including extensive

support for clipping
• combine several HTML files into one PDF

• barcodes: callas pdfChip supports all 1D and 2D barcodes
we are aware of (ca. 130 different symbologies)

• print loop: based on a custom JavaScript function provid-
ed by callas pdfChip, and in combination with suitable
JavaScript scripting, enables creation of any number of
PDF pages in a dynamic fashion, each with partially or
completely different content

The above implies that HTML has to be written with the in-
tended purpose of creating decent PDF from it in mind. Un-
less callas pdfChip is told in some fashion that a certain ob-
ject is to use a spot colour, and is to be set to overprint, it
won’t happen. At the same time this does not preclude to
write HTML that can also be used … for a web page. So while

 Concepts 2

callas pdfChip is not a general purpose web page to PDF con-
verter, it can be immensely powerful when it comes to deriv-
ing a high quality PDF from a web page, or from a collection
of web pages. In most cases callas pdfChip specific features
that extend HTML 5, CSS 3 or JavaScript do not cause issues
when the same HTML is served through a browser. In some
cases, for example when specifying a spot colour or import-
ing PDF pages, a fallback may have to be provided (which is a
common pratice anyway in modern web programming, e.g.
when following the principles of progressive enhancement).

Overall architecture of callas pdfChip

When developing callas pdfChip we did not start from
scratch. There are some technologies readily available that
do a great job at processing HTML 5. So we decided to pick
one, and we chose WebKit as one of the two building blocks.
WebKit is the engine on which the Apple Safari browser is
based. As WebKit is dveloped further, callas pdfChip will be
updated to inherit the WebKit enhancements.

Web browsers, and by implication WebKit, are optimised for
rendering visual content on screen. Taking screen quality vi-
sual content to create PDF would leave a lot of thing to be de-
sired if high quality PDFs are needed. Thus the part of WebKit
that prepares HTML for output on a screen was replaced by a
component developed by the callas software development
team, internally named “cchip” (shorthand for “callas convert
HTML into PDF”). cchip translates each piece of HTML con-
tent into the most suitable representation in PDF, and takes
care of all the house keeping chores when writing a PDF.

Some other areas in WebKit had to be customised as well, to
support callas pdfChip specific functionality, mostly to access
or pass through information that is needed to write high
quality PDF but might not be readily available otherwise at
the time an object is to be encoded in PDF.

Performance

WebKit is an impressive technology when it comes to perfor-
mance, and there is probably not much we could do to im-
prove its performance substantially. The PDF creating mod-
ule cchip though is fully under our own control. The following

 Concepts 3

top design goals have been and are at the core of the callas
pdfChip development:

• create the smallest possible PDF files
• support very long / big PDF files
• create PDF files that are most efficicient when processed

(for example by a PDF viewer or printer)
• do not require a lot of memory
• do not require substantially more memory for long / big

documents that for short / small documents
• do not add substantial processing time on top of the time

WebKit needs to process the HTML
• support current versions of Mac OS X, Microsoft Windows,

and Linux
• and last but not least: it is ready when it is ready

The technology behind callas pdfChip has already been put
to work before callas pdfChip was published. Since late 2013
callas pdfToolbox allows to create several types of reports
based on HTML templates. Since March 2014, callas pdfaPilot
can convert HTML based emails to PDF and PDF/A. All in all
callas pdfChip has undergone one and half year of extensive
testing before it has been shipped.

A word on…

HTML 5 comes as a pack of technologies – CSS 3, MathML,
SVG, and JavaScript. All of these are supported by WebKit
and thus by callas pdfChip. While it's easy to see in which
ways CSS 3 is relevant, it might be less obvious for the other
components.

… CSS 3

There are some very important aspects about CSS 3 that one
must understand when relying on it: CSS 3 is not one specifi-
cation; instead it is a group of related specifications. CSS 3 is
not “frozen”; instead, new modules can be added at any
time. CSS 3 is not necessarily fully supported by any existing
implementation; some modules are possibly not supported
at all (because they are still too new), others are only sup-
ported to a very limited degree (because it is either “not so
important” to developers or their market, or maybe to “cost-
ly” to implement fully. All this applies to callas pdfChip as

 Concepts 4

well. An excellent source to find out whether a given CSS 3
feature can be used in callas pdfChip – have a look at the
“Can I Use” website at http://caniuse.com/ and check the in-
formation about support of a given feature in Apple Safari.

… MathML

Anybody looking at the creation of text books or scientific
publications, will be happy to know that MathML can be used
in callas pdfChip. Some limitations do apply though:

• MathML (currently at version 3) comes in two flavors: con-
tent MathML and presentation MathML. There is hardly
any support for content MathML in today’s browsers, and
everybody – users of MathML in general as much as devel-
opers of MathML supporting technology – seem to focus
on just presentation MathML.

• Support for presentation MathML in WebKit is not perfect,
certain more complex aspects of MathML are just not
working in WebKit – unless one adds MathJAX to the
equation (pun intended): MathJAX is an open source, free
of charge JavaScript library that turbo charges WebKit (or
other browsers/web engines), and achieves almost per-
fect support for presentation MathML (and on the side al-
so allows for use of ASCIIMath, TeX, or LaTeX based repre-
sentations of mathematical expressions).

… SVG

SVG and PDF share the same imaging concepts, and most of
the SVG syntax has direct equivalents with syntax in PDF. This
is very handy when one wishes to have maximum control
over how content is encoded into a PDF page. SVG does not
paginate well – in this regard it is similar to an image.

Note: Where a single page PDF is to be created, SVG files can
also be processed directly by callas pdfChip.

… JavaScript

In its early days JavaScript inside HTML content has mostly
been used for creation of effects. Over time it became a full
fledged programming language, even supporting object ori-

 Concepts 5

ented programming. Todays rich interactive websites are not
thinkable without JavaScript. And driven by the interest in
making websites more interesting and interactive, the devel-
opers behind the JavaScript engine in WebKit have invested
a lot of effort in making it highly performant.

This can be taken advantage of in callas pdfChip. Whether in-
formation is to be retrieved from whatever web service, or
whether decision about the content to be encoded is to be
made on the basis of whatever source of data – it can be
done, and it can be done very efficiently. In addition, callas
pdfChip can be extended, by using a suitable JavaScript li-
brary. For example, the hyphenation support in WebKit is not
very good. This can be remedied by using a JavaScript library
like the Hunspell based “hyphenator.js” library. Also, in a
number of cases where WebKit does not support a recently
introduced CSS 3 feature yet, in many cases a so called “poly-
fill” is available that just fills such a gap and makes WebKit
– and thus callas pdfChip – behave as if it supported that fea-
ture.

Single pass processing

Unless advanced pagination requirements are to be ad-
dressed, the default operating mode, Single Pass, will be fully
sufficient. The underlying concept is simple: callas pdfChip
processes the incoming HTML file (which implies execution of
JavaScript used by the file obviously) and converts all visual
content, as well as applicable metadata, to PDF syntax. This
resulting PDF syntax is wrapped up in a compact PDF file.

callas pdfChip in many regards behaves like a web browser,
thus it is absolutely adequate to use URLs the same way as
they are used on HTML pages, It is not a prerequisite that all
of the referenced resources exist locally on the machine
where callas pdfChip is running. That said – as resolving links
can fail in a browser if the respective web server or web ser-
vices is not reachable or not available, so it can fail in callas
pdfChip. In addition, accessing a resource on the local ma-
chine or in the local area network tends to work faster than
doing the same over the internet.

When making use of JavaScript, it is important to understand
that in principle callas pdfChip works in synchronous mode.
Where JavaScript is used in an asynchronous fashion. Special

 Concepts 6

precautions have to be taken into account – make sure to
read and understand the section on “pdfChip specific
JavaScript aspects”.

Multiple pass processing

Everyone looking at pagination functionality in HTML 5 will
end up looking at the CSS 3 Paged Media module. Some will
already by disappointed by the limitations in the Paged Me-
dia module, like lack of internal styling inside running head-
ers or footers. Disappointment will grow substantially once
one finds out that most non-trivial features in the Paged Me-
dia module are hardly implemented in any of the leading
browsers or web engines.

We felt the same disappointment, and decided to give up on
CSS 3 Paged Media and instead choose a different, conceptu-
ally pretty simple approach: process the HTML file more than
once, remember relevant information from the first process-
ing round and make use of it in following processing rounds.
Obvious candidates for this technique are total number of
pages (adding text such as “Page 5 out of 12”), or the text of
the current (for a given page) section headings for use in run-
ning headers and footers.

callas pdfChip collects and then makes available such infor-
mation between passes. In addition, based on custom
JavaScript calls, additional information can be collected dur-
ing a pass and provided for processing by a subsequent pass.
This can become suitable for the creation of fully dynamic
table of contents (even for several HTML files converted to a
single aggregated PDF file), including correct page numbers
and links. The same applies to cross references, lists of fig-
ures or indexes.

 Concepts 7

	callas pdfChip – the Foundation
	So if it’s not for converting web sites to PDF – what is it for?
	Overall architecture of callas pdfChip
	Performance
	A word on…
	… CSS 3
	… MathML
	… SVG
	… JavaScript

	Single pass processing
	Multiple pass processing

